Lecture 3

The Anatomy of an Op-Amp

Prof Peter YK Cheung Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EE2_CAS/ E-mail: p.cheung@imperial.ac.uk

PYKC 17 Oct 2023

What you should know already?

Rules of thumb – Bipolar Junction Transistor (BJT)

V_{CB}≥0V

l_c≈βl_□

- ✤ V_{BE} < 0.7V</p>
- Transistor OFF
- Near zero I_B and I_C (except leakage)
- Good for digital circuits

◊ V_{BE} ≥ 0.7V

V_{BE}>0.7V

- BC junction diode reverse biased
- Transistor in linear/active region
- $I_C \approx \beta I_B$ applies
- Good for analogue circuits

♦ V_{BE} ≥ 0.7V

_{3F}>0.7∨

BC junction diode
 NOT reverse biased

V_{CB} < 0V

- Transistor in saturation region
- $I_{C} < \beta I_{B}$
- Good for digital circuits

NPN Transistor in Linear Region

Small signal behaviour of NPN transistor

- Quiescent I_C determine operating point
- Small signal model 2 resistors
 r_{be} and r_O, and a current source
- r_o large can be omitted

• $\delta i_B = \delta v_{BE} / r_{BE}$

•
$$\delta i_{C} = g_{m} \delta v_{BE}$$

- current gain: $β = δi_C / δi_B$
- transconductance: $g_m = \delta i_C / \delta v_{BE} = I_C / V_T$
- Input resistance: $r_{be} = \delta v_{BE} / \delta i_B = \beta V_T / I_C$

Inside a typical op-amp

- Three stages architecture:
 - 1. Differential input stage long-tail pair (Yr 1 Circuits part 2, adc_9, slides 8-14)
 - 2. Voltage gain stage common emitter amp (adc_6, slides 3-7)
 - 3. Output drive stage push-pull circuit

Differential Input Stage – differential gain

Consider $V_{in} = 0$, IN - is grounded $\diamond V_E \approx 0.7V$ $\diamond I_T \approx (V_{CC} - 0.7) / R_2$ $\diamond I_1 \approx I_2 \approx \frac{1}{2} I_T \approx \frac{1}{2} (V_{CC} - 0.7) / R_2$ $\diamond V_1 = R_1 * I_{C1} + V_{SS}$ Apply small input signal δV_{in}

$$\delta v_{\rm E} \approx \frac{1}{2} \, \delta v_{\rm in}$$

$$\delta i_{\rm T} \approx \frac{1}{2} \, \delta v_{\rm in} / R_2 \approx 0$$

$$\delta i_1 \approx -\delta i_2 = -g_{\rm m}^* \frac{1}{2} \, \delta v_{\rm in}$$

$$\delta v_1 = R_1^* \, \delta i_1 = -R_1^* g_{\rm m}^* \frac{1}{2} \, \delta v_{\rm in}$$

Differential Input Stage – common mode gain

Small Signal Gain stage

- Common Emitter amplifier (Yr 1st ADC part 2 Lecture 6, S7)
- $\, \bullet \, \delta v_{out} = g_m \, \delta v_{in} * R_3$
- $A_V = \delta v_{out} / \delta v_{in} = g_m R_3$
- Increase g_m and R₃
- Most of the voltage gain produced by this stage

Gain stage is not suitable to drive output load

- Common-emitter amplifer is also called a
 Class A amplifer (name does not matter)
- R3 is the load (e.g. speaker)
- Transistor Q3 works throughout the entire cycle of a sine signal (360°)
- Very poor power efficiency:

$$efficiency \eta = \frac{power \ to \ load \ R_3}{Power \ from \ supply} < 25\%$$

Efficiency of a class A amplifier

- Assume Vout at quiescent (i.e. no input) is biased to be at Vcc/2
- Quiescent collector current $I_{CQ} = (Vcc/2)*R3$
- Average power drawn from supply voltage is:

$$P_i(dc) = V_{CC} I_{CQ} = \frac{V_{CC}^2}{2 * R3}$$

- AC power delivered to load R3 is: $P_o(ac) = \frac{V_{out}(rms)^2}{R3}$
- P_o is maximum when $V_{out(pk-pk)} = V_{CC}$, i.e. maximum output voltage swing
- Or $V_{out}(rms) = V_{CC}/2\sqrt{2}$
- Therefore max $P_o(ac) = \frac{V_{CC}^2}{8R3}$
- Hence max $\eta = \frac{maximum P_0(ac)}{P_i(dc)} = \frac{V_{CC}^2/8R3}{V_{CC}^2/2R3} = \frac{1}{4}$

Output Stage

- ✤ Yr 1st ADC part 2 Lecture 6, S3-5
- Q4 is emitter follower (Common-Emitter) for sourcing current to Vout (PUSH)
- Q5 is another emitter follower for sinking current from Vout (PULL)
- This is known as a PUSH-PULL or class B amplifer circuit
- ♦ δ Vout ≈ δ V_{in}, i.e. its gain is 1
- Each transistor only operate for half cycle or 180° of a sinewave signal
- Further, Q4 and Q5 requires VBE > 0.7V to start conducting, therefore this amplifier has distortion.

Vcc

Q5

CROSSOVER

Vout

Push-pull (Class B) amplifier efficiency

Q4 and Q5 conduct only for half cycle, hence

DC supply power $P_i(dc) = V_{CC} I_{DC}$

✤ Average current is that of a full-wave rectified signal: $I_{DC} = \frac{2}{\pi} I_{pk}$ where I_{pk} is the peak output current.

• Hence
$$I_{DC} = \frac{2}{\pi} (\frac{V_{pk}}{R_L})$$
, and $P_i(dc) = \frac{2}{\pi} (\frac{V_{CC}^2}{R_L})$

• Hence
$$\eta = \frac{P_o(ac)}{P_i(dc)} = \frac{V_{CC}^2 / 2R_L}{\frac{2}{\pi} (\frac{V_{CC}^2}{R_L})} = \frac{\pi}{4} = 78.5\%$$

Driving 8 Ω speaker with LM386

LM386 Low Voltage Audio Power Amplifier

Amplifier with Gain = 20 Minimum Parts

Features

- Battery operation
- Minimum external parts
- Wide supply voltage range: 4V-12V or 5V-18V
- Low quiescent current drain: 4mA
- Voltage gains from 20 to 200
- Ground referenced input
- Self-centering output quiescent voltage
- Low distortion: 0.2% ($A_V = 20$, $V_S = 6V$, $R_L = 8\Omega$, $P_O = 125$ mW, f = 1kHz)
- Available in 8 pin MSOP package

LM386 as a practical x20 amplifier (Lab 1)

